Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vaccine ; 41(20): 3292-3300, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2292542

ABSTRACT

OBJECTIVES: Vaccine effectiveness against transmission (VET) of SARS-CoV-2-infection can be estimated from secondary attack rates observed during contact tracing. We estimated VET, the vaccine-effect on infectiousness of the index case and susceptibility of the high-risk exposure contact (HREC). METHODS: We fitted RT-PCR-test results from HREC to immunity status (vaccine schedule, prior infection, time since last immunity-conferring event), age, sex, calendar week of sampling, household, background positivity rate and dominant VOC using a multilevel Bayesian regression-model. We included Belgian data collected between January 2021 and January 2022. RESULTS: For primary BNT162b2-vaccination we estimated initial VET at 96% (95%CI 95-97) against Alpha, 87% (95%CI 84-88) against Delta and 31% (95%CI 25-37) against Omicron. Initial VET of booster-vaccination (mRNA primary and booster-vaccination) was 87% (95%CI 86-89) against Delta and 68% (95%CI 65-70) against Omicron. The VET-estimate against Delta and Omicron decreased to 71% (95%CI 64-78) and 55% (95%CI 46-62) respectively, 150-200 days after booster-vaccination. Hybrid immunity, defined as vaccination and documented prior infection, was associated with durable and higher or comparable (by number of antigen exposures) protection against transmission. CONCLUSIONS: While we observed VOC-specific immune-escape, especially by Omicron, and waning over time since immunization, vaccination remained associated with a reduced risk of SARS-CoV-2-transmission.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Bayes Theorem , Belgium/epidemiology , Contact Tracing , Vaccine Efficacy , Immunization, Secondary
2.
Vaccines (Basel) ; 11(2)2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2233260

ABSTRACT

We investigated effectiveness of (1) mRNA booster vaccination versus primary vaccination only and (2) heterologous (viral vector-mRNA) versus homologous (mRNA-mRNA) prime-boost vaccination against severe outcomes of BA.1, BA.2, BA.4 or BA.5 Omicron infection (confirmed by whole genome sequencing) among hospitalized COVID-19 patients using observational data from national COVID-19 registries. In addition, it was investigated whether the difference between the heterologous and homologous prime-boost vaccination was homogenous across Omicron sub-lineages. Regression standardization (parametric g-formula) was used to estimate counterfactual risks for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality under exposure to different vaccination schedules. The estimated risk for severe COVID-19 and in-hospital mortality was significantly lower with an mRNA booster vaccination as compared to only a primary vaccination schedule (RR = 0.59 [0.33; 0.85] and RR = 0.47 [0.15; 0.79], respectively). No significance difference was observed in the estimated risk for severe COVID-19, ICU admission and in-hospital mortality with a heterologous compared to a homologous prime-boost vaccination schedule, and this difference was not significantly modified by the Omicron sub-lineage. Our results support evidence that mRNA booster vaccination reduced the risk of severe COVID-19 disease during the Omicron-predominant period.

3.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911633

ABSTRACT

This retrospective multi-center matched cohort study assessed the risk for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality in hospitalized patients when infected with the Omicron variant compared to when infected with the Delta variant. The study is based on a causal framework using individually-linked data from national COVID-19 registries. The study population consisted of 954 COVID-19 patients (of which, 445 were infected with Omicron) above 18 years old admitted to a Belgian hospital during the autumn and winter season 2021-2022, and with available viral genomic data. Patients were matched based on the hospital, whereas other possible confounders (demographics, comorbidities, vaccination status, socio-economic status, and ICU occupancy) were adjusted for by using a multivariable logistic regression analysis. The estimated standardized risk for severe COVID-19 and ICU admission in hospitalized patients was significantly lower (RR = 0.63; 95% CI (0.30; 0.97) and RR = 0.56; 95% CI (0.14; 0.99), respectively) when infected with the Omicron variant, whereas in-hospital mortality was not significantly different according to the SARS-CoV-2 variant (RR = 0.78, 95% CI (0.28-1.29)). This study demonstrates the added value of integrated genomic and clinical surveillance to recognize the multifactorial nature of COVID-19 pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Belgium/epidemiology , COVID-19/epidemiology , Cohort Studies , Humans , Retrospective Studies , SARS-CoV-2/genetics , Seasons
4.
Emerg Infect Dis ; 28(8): 1699-1702, 2022 08.
Article in English | MEDLINE | ID: covidwho-1902888

ABSTRACT

We investigated the serial interval for SARS-CoV-2 Omicron BA.1 and Delta variants and observed a shorter serial interval for Omicron, suggesting faster transmission. Results indicate a relationship between empirical serial interval and vaccination status for both variants. Further assessment of the causes and extent of Omicron dominance over Delta is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/virology , Humans , SARS-CoV-2/genetics , Vaccination/statistics & numerical data
5.
Arch Public Health ; 80(1): 118, 2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1789143

ABSTRACT

BACKGROUND: Contact tracing is one of the main public health tools in the control of coronavirus disease 2019 (COVID-19). A centralized contact tracing system was developed in Belgium in 2020. We aim to evaluate the performance and describe the results, between January 01, 2021, and September 30, 2021. The characteristics of COVID-19 cases and the impact of COVID-19 vaccination on testing and tracing are also described. METHODS: We combined laboratory diagnostic test data (molecular and antigen test), vaccination data, and contact tracing data. A descriptive analysis was done to evaluate the performance of contact tracing and describe insights into the epidemiology of COVID-19 by contact tracing. RESULTS: Between January and September 2021, 555.181 COVID-19 cases were reported to the central contact center and 91% were contacted. The average delay between symptom onset and contact tracing initiation was around 5 days, of which 4 days corresponded to pre-testing delay. High-Risk Contacts (HRC) were reported by 49% of the contacted index cases. The mean number of reported HRC was 2.7. In total, 666.869 HRC were reported of which 91% were successfully contacted and 89% of these were tested at least once following the interview. The estimated average secondary attack rate (SAR) among the contacts of the COVID-19 cases who reported at least one contact, was 27% and was significantly higher among household HRC. The proportion of COVID-19 cases who were previously identified as HRC within the central system was 24%. CONCLUSIONS: The contact-tracing system contacted more than 90% of the reported COVID-19 cases and their HRC. This proportion remained stable between January 1 2021 and September 30 2021 despite an increase in cases in March-April 2021. We report high SAR, indicating that through contact tracing a large number of infections were prospectively detected. The system can be further improved by (1) reducing the delay between onset of illness and medical consultation (2) having more exhaustive reporting of HRC by the COVID-19 case.

6.
Archives of Public Health ; 80, 2022.
Article in English | EuropePMC | ID: covidwho-1787387

ABSTRACT

Background Contact tracing is one of the main public health tools in the control of coronavirus disease 2019 (COVID-19). A centralized contact tracing system was developed in Belgium in 2020. We aim to evaluate the performance and describe the results, between January 01, 2021, and September 30, 2021. The characteristics of COVID-19 cases and the impact of COVID-19 vaccination on testing and tracing are also described. Methods We combined laboratory diagnostic test data (molecular and antigen test), vaccination data, and contact tracing data. A descriptive analysis was done to evaluate the performance of contact tracing and describe insights into the epidemiology of COVID-19 by contact tracing. Results Between January and September 2021, 555.181 COVID-19 cases were reported to the central contact center and 91% were contacted. The average delay between symptom onset and contact tracing initiation was around 5 days, of which 4 days corresponded to pre-testing delay. High-Risk Contacts (HRC) were reported by 49% of the contacted index cases. The mean number of reported HRC was 2.7. In total, 666.869 HRC were reported of which 91% were successfully contacted and 89% of these were tested at least once following the interview. The estimated average secondary attack rate (SAR) among the contacts of the COVID-19 cases who reported at least one contact, was 27% and was significantly higher among household HRC. The proportion of COVID-19 cases who were previously identified as HRC within the central system was 24%. Conclusions The contact-tracing system contacted more than 90% of the reported COVID-19 cases and their HRC. This proportion remained stable between January 1 2021 and September 30 2021 despite an increase in cases in March–April 2021. We report high SAR, indicating that through contact tracing a large number of infections were prospectively detected. The system can be further improved by (1) reducing the delay between onset of illness and medical consultation (2) having more exhaustive reporting of HRC by the COVID-19 case. Supplementary Information The online version contains supplementary material available at 10.1186/s13690-022-00875-6.

7.
Vaccine ; 40(22): 3027-3037, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1783823

ABSTRACT

BACKGROUND: During the first half of 2021, we observed high vaccine effectiveness (VE) against SARS-CoV2-infection. The replacement of the alpha-'variant of concern' (VOC) by the delta-VOC and uncertainty about the time course of immunity called for a re-assessment. METHODS: We estimated VE against transmission of infection (VET) from Belgian contact tracing data for high-risk exposure contacts between 26/01/2021 and 14/12/2021 by susceptibility (VEs) and infectiousness of breakthrough cases (VEi) for a complete schedule of Ad26.COV2.S, ChAdOx1, BNT162b2, mRNA-1273 as well as infection-acquired and hybrid immunity. We used a multilevel Bayesian model and adjusted for personal characteristics (age, sex, household), background exposure, calendar week, VOC and time since immunity conferring-event. FINDINGS: VET-estimates were higher for mRNA-vaccines, over 90%, compared to viral vector vaccines: 66% and 80% for Ad26COV2.S and ChAdOx1 respectively (Alpha, 0-50 days after vaccination). Delta was associated with a 40% increase in odds of transmission and a decrease of VEs (72-64%) and especially of VEi (71-46% for BNT162b2). Infection-acquired and hybrid immunity were less affected by Delta. Waning further reduced VET-estimates: from 81% to 63% for BNT162b2 (Delta, 150-200 days after vaccination). We observed lower initial VEi in the age group 65-84 years (32% vs 46% in the age group 45-64 years for BNT162b2) and faster waning. Hybrid immunity waned slower than vaccine-induced immunity. INTERPRETATION: VEi and VEs-estimates, while remaining significant, were reduced by Delta and waned over time. We observed faster waning in the oldest age group. We should seek to improve vaccine-induced protection in older persons and those vaccinated with viral-vector vaccines.


Subject(s)
COVID-19 , Vaccines , Ad26COVS1 , Aged , Aged, 80 and over , BNT162 Vaccine , Bayes Theorem , Belgium/epidemiology , COVID-19/prevention & control , Contact Tracing , Humans , Middle Aged , RNA, Viral , SARS-CoV-2 , Vaccination , Vaccine Efficacy
8.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: covidwho-1786084

ABSTRACT

The objective of this study was to investigate the incidence and risk factors associated with COVID-19 vaccine breakthrough infections. We included all persons ≥18 years that had been fully vaccinated against COVID-19 for ≥14 days, between 1 February 2021 and 5 December 2021, in Belgium. The incidence of breakthrough infections (laboratory confirmed SARS-CoV-2-infections) was determined. Factors associated with breakthrough infections were analyzed using COX proportional hazard models. Among 8,062,600 fully vaccinated adults, we identified 373,070 breakthrough infections with an incidence of 11.2 (95%CI 11.2-11.3)/100 person years. Vaccination with Ad26.COV2.S (HR1.54, 95%CI 1.52-1.56) or ChAdOx1 (HR1.68, 95%CI 1.66-1.69) was associated with a higher risk of a breakthrough infection compared to BNT162b2, while mRNA-1273 was associated with a lower risk (HR0.68, 95%CI 0.67-0.69). A prior COVID-19-infection was protective against a breakthrough infection (HR0.23, 95%CI 0.23-0.24), as was an mRNA booster (HR0.44, 95%CI 0.43-0.45). During a breakthrough infection, those who had a prior COVID-19 infection were less likely to have COVID-19 symptoms of almost all types than naïve persons. We identified risk factors associated with breakthrough infections, such as vaccination with adenoviral-vector vaccines, which could help inform future decisions on booster vaccination strategies. A prior COVID-19 infection lowered the risk of breakthrough infections and of having symptoms, highlighting the protective effect of hybrid immunity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Adult , BNT162 Vaccine , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Incidence , Prospective Studies , Risk Factors , SARS-CoV-2/genetics
9.
Vaccine ; 39(39): 5456-5460, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1364509

ABSTRACT

In Belgium, high-risk contacts of an infected person were offered PCR-testing irrespective of their vaccination status. We estimated vaccine effectiveness (VE) against infection and onwards transmission, controlling for previous infections, household-exposure and temporal trends. We included 301,741 tests from 25 January to 24 June 2021. Full-schedule vaccination was associated with significant protection against infection. In addition, mRNA-vaccines reduced onward transmission: VE-estimates increased to >90% when index and contact were fully vaccinated. The small number of viral-vector vaccines included limited interpretability.


Subject(s)
COVID-19 , Vaccines , Belgium/epidemiology , Contact Tracing , Humans , SARS-CoV-2
10.
Arch Public Health ; 78(1): 117, 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-925485

ABSTRACT

BACKGROUND: The COVID-19 mortality rate in Belgium has been ranked among the highest in the world. To assess the appropriateness of the country's COVID-19 mortality surveillance, that includes long-term care facilities deaths and deaths in possible cases, the number of COVID-19 deaths was compared with the number of deaths from all-cause mortality. Mortality during the COVID-19 pandemic was also compared with historical mortality rates from the last century including those of the Spanish influenza pandemic. METHODS: Excess mortality predictions and COVID-19 mortality data were analysed for the period March 10th to June 21st 2020. The number of COVID-19 deaths and the COVID-19 mortality rate per million were calculated for hospitals, nursing homes and other places of death, according to diagnostic status (confirmed/possible infection). To evaluate historical mortality, monthly mortality rates were calculated from January 1900 to June 2020. RESULTS: Nine thousand five hundred ninety-one COVID-19 deaths and 39,076 deaths from all-causes were recorded, with a correlation of 94% (Spearman's rho, p < 0,01). During the period with statistically significant excess mortality (March 20th to April 28th; total excess mortality 64.7%), 7917 excess deaths were observed among the 20,159 deaths from all-causes. In the same period, 7576 COVID-19 deaths were notified, indicating that 96% of the excess mortality were likely attributable to COVID-19. The inclusion of deaths in nursing homes doubled the COVID-19 mortality rate, while adding deaths in possible cases increased it by 27%. Deaths in laboratory-confirmed cases accounted for 69% of total COVID-19-related deaths and 43% of in-hospital deaths. Although the number of deaths was historically high, the monthly mortality rate was lower in April 2020 compared to the major fatal events of the last century. CONCLUSIONS: Trends in all-cause mortality during the first wave of the epidemic was a key indicator to validate the Belgium's high COVID-19 mortality figures. A COVID-19 mortality surveillance limited to deaths from hospitalised and selected laboratory-confirmed cases would have underestimated the magnitude of the epidemic. Excess mortality, daily and monthly number of deaths in Belgium were historically high classifying undeniably the first wave of the COVID-19 epidemic as a fatal event.

11.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: covidwho-639161

ABSTRACT

A remarkable excess mortality has coincided with the COVID-19 pandemic in Europe. We present preliminary pooled estimates of all-cause mortality for 24 European countries/federal states participating in the European monitoring of excess mortality for public health action (EuroMOMO) network, for the period March-April 2020. Excess mortality particularly affected ≥ 65 year olds (91% of all excess deaths), but also 45-64 (8%) and 15-44 year olds (1%). No excess mortality was observed in 0-14 year olds.


Subject(s)
Cause of Death/trends , Coronavirus Infections/mortality , Coronavirus/isolation & purification , Influenza, Human/mortality , Pneumonia, Viral/mortality , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Europe/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/diagnosis , Male , Middle Aged , Mortality/trends , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance , Preliminary Data , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL